
DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

Point-and-Click Analysis and Hardening to Enhance
FPGA Bitstream Security

David Torres
FPGA Security Lead

Red Balloon Security, Inc.
New York, NY USA

davidt@redballoonsecurity.com

Grant Skipper
Naval Surface Warfare Center, Crane

U.S. Navy
Crane, IN USA

grant.a.skipper.ctr@us.navy.mil

Andrew Taub
Commercial Lead

Red Balloon Security, Inc.
New York, NY USA

andrew@redballoonsecurity.com

Abstract—Securing a Field Programmable Gate Array
(FPGA) bitstream is critical for protecting against cyber
vulnerabilities and attacks. Researchers who focus on exploitation
of FPGAs study and develop offensive techniques targeting
bitstreams. FPGAs deployed in critical infrastructure and other
sensitive systems could be configured with unsecured bitstreams
and it may be impossible to regenerate those bitstreams and apply
recommended security settings without source code. Until
recently, there had been no third-party tools to unpack, modify, or
repack a generated bitstream developed with vendor software.
However, it is now possible to unpack, modify, and harden a
bitstream without using vendor software. We devised a method
that includes such functionality, augmenting bitstream security
and delivering assurance. Under guidance from the National
Security Agency’s Joint Federated Assurance Center (JFAC)
Hardware Assurance Lab, we developed a point-and-click
software tool called Bitwise to identify whether a bitstream is
vulnerable to Threat Descriptions (TDs) as defined in the
Department of Defense’s Levels of Assurance (LoA) guidelines,
specifically TD-1 (Adversary utilizes a known FPGA platform
vulnerability) and TD-6 (Adversary swaps configuration file on
target). Bitwise can be used as an evaluation tool that identifies,
analyzes, and modifies bitstream header part configuration data,
allowing for the successful assessment and redeployment of
developed bitstreams. The tool does not require vendor software
or source code, as well as other constraint files that are typically
necessary to recompile a successful bitstream. Additionally,
Bitwise can identify whether Common Vulnerabilities and
Exposures (CVEs) are present in a bitstream and provide
automated mitigation.

I. INTRODUCTION
The FPGA market was valued at $12.1 billion in 2024 and is

estimated to reach $25.8 billion by 2029 [1]. FPGAs are used in
a range of critical industries including industrial, aerospace,
telecommunication, and automotive. Supplying to both
government and commercial markets, FPGA vendors
dynamically meet customers’ needs by developing proprietary
software and hardware. Current designs are integrated to
support sophisticated FPGAs that have modernized security
features while legacy designs, which are not hardened against
different types of targeted attacks, may be vulnerable and could
be overlooked. Implementing FPGA bitstream security involves
enabling specific vendor tool settings during the design flow
which can be daunting and confusing to designers. Through
collaboration with the National Security Agency’s Joint
Federated Assurance Center (JFAC), we present the ability to

ensure that security settings are correctly implemented in a
FPGA designs without the use of vendor software.

Bitwise (Bitstream Wizard for Intelligent Security
Enhancements) is a security verification tool for FPGA
bitstreams capable of mitigating against known CVEs, while
also positioned to mitigate and defend against future CVEs. By
analyzing the bitstream, it is technically feasible to understand a
FPGA’s security configuration. Using this capability, Bitwise
is able to:

• Transform: Take an unsecured bitstream and apply
best practice security settings, such as encryption and
authentication. Deliver a rapid utility for maintaining
and updating security settings over the lifespan of a
design, such as updating keys without having to
regenerate the entire design.

• Harden: Remove and inject commands to prevent
breaking of encryption.

• Analyze: Evaluate & validate security configurations,
identify risks & mitigations, and generate reporting that
maps to Levels of Assurance (LoA) guidelines.

 The bitstream header information contains information
about the contents of the entire bitstream. Security settings of
the bitstream are in the header information and may be set in the
constraints file using Tool Command Language (TCL). To
modify settings in the bitstream, the project needs to be
synthesized, compiled, and a new bitstream generated. The
ability to Transform, Harden and Analyze the bitstream using
Bitwise reduces the amount of time a designer needs to evaluate
and make modifications to the bitstreams header information.

 Just like other hardware and software, FPGAs and bitstreams
face vulnerabilities and design flaws. One example is the
Starbleed vulnerability which affects Xilinx 7 series FPGAs and
was disclosed in 2020 [2]. Xilinx published a Design Advisory
for the 7 Series and Virtex 6 FPGAs in response to the Starbleed
finding [3]. For affected FPGAs with designs that were created
before the disclosure of Starbleed and that are already deployed,
Bitwise can help mitigate this vulnerability by evaluating the
bitstream without having to recreate the project.

 An attacker can make certain assumptions about a bitstream
once it is generated by Vivado, Xilinx’s FPGA development
tool. Hardening the bitstream is a technique that can be used to
aggravate an attacker’s approach to compromising a secure

mailto:davidt@redballoonsecurity.com
mailto:grant.a.skipper.ctr@us.navy.mil
mailto:andrew@redballoonsecurity.com

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

bitstream. Bitwise can easily help mitigate attacks targeting the
Starbleed vulnerability through: (i) configuration shuffling
(randomizing order of packets); (ii) injecting “no operation”
(NOP) commands; (iii) randomizing NOPs; or (iv) removing all
write WBSTAR packets. Hardening allows at a minimum 16-
bits and up to 27-bits of entropy. In this scenario, 2!" creates a
very low probability of 1 in 134,217,728 for an attack to be
successful.

Fig. 1. Example effect of applying static bitstream hardening.

 Bitwise provides the end-user the ability to open and analyze
a bitstream. The end-user can rapidly modify the bitstream’s
configuration settings. With no knowledge of vendor software,
the bitstream can be evaluated, modified, and redeployed on the
FPGA. This helps to reduce the time needed to implement
mitigation techniques for known CVEs or ones protected by a
vendor’s Non-Disclosure Agreement (NDA).

 Researchers are consistently publishing innovative
techniques to compromise bitstream security. FPGAs are prone
to crude and sophisticated attacks, and bitstreams are attractive
attack vectors. Intellectual property (IP) theft, harm to FPGA-
based systems, and significant data loss are all associated with
FPGA security threats [4]. IP theft is a cause for major financial
and reputational damage, reportedly in the range of hundreds of
billions of dollars annually in the U.S. alone [5]. Protecting
against IP theft begins with properly securing the bitstream by
properly configuring the FPGA. As vulnerabilities arise,
Bitwise provides an automated solution to validate and mitigate
known attacks. Cloning and hardware trojan insertion are a few
possibilities inherent to compromising a secure bitstream.
Cloning involves copying and utilizing the bitstream without
permission of the design’s owner. Once the device’s security is
compromised, a malicious actor can insert a hardware trojan,
and the bitstream’s authenticity and confidentiality may be lost.
These attacks are directed towards the FPGA’s configuration
engine. To help defend against such types of threats, the
National Security Agency developed and publicly published a
Cybersecurity Technical Report titled, “Department of Defense
(DoD) Microelectronics: FPGA Level of Assurance (LoA) 1
Best Practices.” This document provides recommendations for
hardware assurance strategies, and Bitwise has the ability to
analyze, manipulate, harden, and report on the security strength
of FPGA bitstreams as outlined in LoA1.

LoA1 has nine Threat Descriptions (TDs) which describe
different ways for how an adversary could compromise or attack
a FPGA [6]:

1. Utilizes a known FPGA platform vulnerability

2. Inserts malicious counterfeit

3. Compromises application design cycle

4. Compromises system assembly, keying, or
provisioning

5. Compromises third-party soft intellectual property (IP)

6. Swaps configuration file on target

7. Substitutes modified FPGA software design suite

8. Modifies FPGA platform at family at design

9. Compromises single-board computing system

Bitwise provides assurance for TD1 (an adversary utilizes a
known FPGA platform vulnerability) and TD6 (an adversary
swaps the configuration file on target). Referring to TD1, this
attack is when an adversary utilizes a vulnerability in a FPGA
platform or vendor development software package to initiate an
attack. For the LoA1 guidelines, a vulnerability is an
unclassified published weakness in the design of a specific
FPGA platform or software program that would allow the
attacker the ability to use it for malicious purposes [6].
Referring to TD6, this attack is when an adversary obtains
access to the system during or after assembly and can
compromise the FPGA device’s operation via the configuration
data [6].

FPGAs are notoriously difficult to secure. The first FPGAs
could only hold simple designs. The chips did not have very
many logical cells, whereas modern chips contain millions.
With the growth of hardware, vendor tools used for development
of FPGA designs have become increasingly complex while
providing flexibility to accommodate user needs. Many attacks
are published specifically in attacking the configuration engine
of the FPGA. Digital circuit designers may not fully understand
security characteristics for one FPGA family, let alone many
families. The intersection between FPGA designers and people
who know FPGA security is very small. Most engineers view
FPGA configuration as “black magic” and do not have the
expertise to actually secure their bitstreams. Bitwise automates
this process. During analysis, Bitwise provides a report
detailing the security posture of the bitstream. If the device does
not meet security requirements, recommendations are provided
in the report. An engineer who does not have the knowledge or
experience to properly secure the FPGA can do so with an
automated approach.

II. MOTIVATION
The National Security Agency’s JFAC Hardware Assurance

Lab developed and released four Cybersecurity Technical
Reports. The purpose of these documents is to help the
Department of Defense protect FPGA-based systems. The
following reports are: the overall assurance process, best
practices, LoA1, and Third-Party IP Review Process for LoA1.

Reviewing the FPGA strategy of outcomes, DoD uses
FPGAs in critical systems. Vulnerabilities exist that were
discovered after designs have been implemented and fielded [7].
There is no easy way to assess and or modify existing bitstreams
in the wild. It is common during development to need project
files and specific tools with source code in order to recreate a
bitstream and evaluate security settings before developing the
new bitstream. Even if a bitstream is developed, there is no easy
way to verify the security settings of the specific FPGA

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

bitstream in use. Being able to perform analysis via an
automated report examining an FPGA bitstream’s security and
configuration data is a powerful approach that is implemented
in our tool. Devices being used in the wild may be obsolete and
the projects that designed not obtainable. Bitwise provides a
solution to transform, evaluate, and harden those bitstreams.

III. THREAT MODEL
Intended consequences from attacking the configuration

engine result in compromising bitstream’s authenticity and
confidentiality. Defining the threat model, we focus on the
following three attack vectors: (i) reverse engineering; (ii)
cloning; and (iii) trojan insertion of the design. Breaking the
bitstream’s confidentiality, designs can easily be cloned. This
provides an environment to easily counterfeit applications
negatively affecting the supply chain. Another scenario is if the
bitstream is compromised, skilled engineers can reverse
engineer and gain important details to the design. These details
can be used maliciously to plan attacks on the device. Another
attack is the insertion of a hardware trojan. Moreover, it can be
used to understand the functionality of the design. Hardware
trojans are based on tampering with the bitstream. Attackers can
insert logic to leak design details, mainly crypto keys from a
design. By the same token, an attacker could disable a design
by making critical modifications that could render an FPGA
useless. Another possible attack is replacing the existing
bitstream with a new bitstream which requires no reverse
engineering of the existing bitstream. This demonstrates that
protecting the authenticity and confidentiality of the bitstream is
critical, especially to national security and DoD Systems.

IV. MEET BITWISE
Bitwise is a FPGA assurance tool powered by the Open

Firmware Reverse Analysis Konsole (OFRAK) which is a
source available Python platform for binary analysis and
modification [8]. Bitwise currently supports Xilinx UltraScale
and UltraScale+ parts and we are actively expanding support to
other FPGAs.

TABLE I.

Bitwise Compatibility
Manufacturer FPGA Family Est. Timeline

Xilinx UltraScale, UltraScale+ Complete

Xilinx 7-Series, 6-Series 1H 2024

Intel Agilex, Stratix, Cyclone 2024

Microchip PolarFire and/or IGLOO 2024

A. Analysis
Bitwise and OFRAK allow a user to conduct bitstream

verification for hardware assurance. Bitwise is designed to be a
drag-and-drop, single push button solution to assist in bitstream
analysis and verification. The Graphical User Interface (GUI)
displays two panes: the Tree View as shown in Fig.2, and the
Hex View as shown in Fig.3. “Set Key Material” allows a user
to encrypt and re-encrypt a bitstream with an encryption key.
For example, a designer can encrypt a bitstream with a key and
later remove or change the key. The “Bitstream Wizard” allows
a designer to obfuscate and provide further entropy to a
bitstream. “Unpack” allows a user to unpack the bitstream’s

header information into a list describing its subcomponents
which detail write packets, no operation packets, and more.
“Analyze” provides information on the security posture of the
bitstream, including a detailed report on the security of the
bitstream mapping to JFAC’s LoA1 guidelines.

Fig. 2. Unpacking a bitstream’s header information and listing its
subcomponents using Bitwise’s Tree View.

In the Hex View, a user can visualize the bitstream header
information, including the size and types of packets that are in
the header information. In addition to this high-level GUI based
wizard, Bitwise offers an API for modifying and updating
granular aspects of the configuration bitstream file. After
modifications are made, the Hex View displays those changes.

Fig. 3. Visualizing a bitstream’s header information and the size and types of
packets in the header information using Bitwise’s Hex View.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

B. Security
 Bitwise’s wizard feature provides a variety of bitstream
transformation techniques. Bitwise’s bitstream wizard supports
plaintext to AES GCM, microbitstream, and report generation.
Bitwise has the ability to convert a non-encrypted bitstream into
an encrypted bitstream. By specifying the AES key and the
initialization vector (IV), a user may convert the bitstream from
plaintext to GCM.

 Once the bitstream is encrypted, Bitwise can detect the
bitstream state. Bitwise can unpack the bitstream while it is
encrypted. The bitstream wizard has different selections with an
encrypted bitstream: GCM to plaintext, Re-encrypt GCM,
Harden, and Generate a report. The hardening of the bitstream
allows a user to mitigate against known CVEs pertaining to the
configuration engine. One example is the Starbleed attack [2],
[9]. Bitwise has the following selections: perform WBSTAR
autonomy, shuffle commands, inject NOPs, and Salt NOPs.
WBSTAR autonomy will remove the write to the WBSTAR
register command. Where shuffling commands makes it harder
for an adversary working with an encrypted bitstream. This
makes it harder to modify certain write commands. NOPs being
added modifies the target bitstream changing the actual footprint
of the configuration data making it harder to attack specific write
commands. Salting NOPs is a way to further obfuscate the
configuration header data in the bitstream. Hardening
techniques do not prevent an attacker from attacking the
bitstream; it makes an attack much more difficult to perform,
especially brute force attacks.

C. Reporting
 For security reporting, Bitwise can automatically generate
a report providing information to the end-user. In the security
report, Bitwise details general metadata, details on the security,
and configuration details. The general metadata displays design,
part, and creation details. Design details explain the design
name, whether it has been compressed, and the tool version that
was used to design the bitstream. Part information will give the
exact part number for the bitstream design. The configuration
details in the report display packet types and a raw count of those
packets in the configuration header of the bitstream. Based on
the security report, Bitwise recommends modifications to the
bitstream. In the report, Bitwise can rapidly evaluate the
bitstream’s security posture according to the DoD’s Level of
Assurance (LoA) guidelines, stating the compliance-level for
the target bitstream and providing actionable feedback that can
be used to achieve compliance.

Fig. 4. Apply point-and-click transformation, hardening, and analysis all
through Bitwise’s wizard.

D. Evaluation
 Lastly, Bitwise has the ability to evaluate bitstreams that are
encrypted in RSA. This ability allows the user to have the same
evaluation as the AES encrypted bitstream. Also, Bitwise
supports Per Frame CRC32 bitstream configuration. This takes
the actual bitstream as one big blob of configuration data and
splits it into individual type1 packets. Bitwise is designed to
look at the security of the FPGA through auditing the
configuration settings in the header information of the bitstream.
The user does not need to know or use vendor software. No
source code is needed to recreate and synthesize the project.
providing actionable feedback that can be used to achieve
compliance.

V. NEW TECHNOLOGY INTEGRATION
 Bitwise makes available, for the first time, the
Microbitstream enhanced compression technology previously
announced by the Naval Sea Systems Command (NAVSEA)
Crane during GOMACTech 2023 [10]. Bitwise allows users to
compress bitstream configuration to the minimum necessary
components necessary to program a FPGA. As an example, the
advantage of Microbitstream compression over the standard
MFWR (Multiple Frame Write/Read) compression natively
supported in Vivado is that Microbitstreams will always result
in higher compression ratios. The effect of Microbitstream
compression is that both file size and total programming time
are dramatically reduced, especially for smaller RTL designs or
partial reconfiguration scenarios. Microbitstreams are explicitly
supported for bitstreams generated with Per Frame CRC.

VI. DESIGN AND OPERATION
Bitwise is designed to provide assurance capabilities for

FPGAs in support of the Joint Federated Assurance Center
(JFAC) for verifying and securing FPGA configuration
bitstreams. Bitwise is developed on top of the Open Firmware
Reverse Analysis Konsole (OFRAK), which provides the
capability to unpack, analyze, modify, and repack the bitstream
without vendor software tools – an essential set of features.

It is imperative to validate FPGA configuration settings by
applying an automated FPGA assurance capability. Bitwise can
perform automated bitstream reduction for Xilinx fabric-based
FPGA configurations. Reduced bitstreams contain the minimal
content required to successfully program a bitstream.
Operationally, existing bitstreams can be analyzed for post-
process reduction. Bitwise provides the capability of encrypting
reduced bitstreams using the existing AES-GCM crypto-system
on Xilinx devices. Encryption of reduced bitstreams is a
configurable option. To mitigate against known attacks on the
FPGA’s configuration engine, a security technique is available
in the form of encrypted command shuffling. Command
shuffling offers a mitigation technique against known CVEs.
This feature randomizes, replaces, and removes bitstream
commands found at the beginning of encrypted Xilinx
bitstreams. This randomization provides a fast, automated
method for increasing the effort and technical requirements
necessary to exploit known CVEs on FPGAs. This technique
facilitates a way to submit pre-existing encrypted bitstreams to
Bitwise and automatically patch configurations.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

Bitwise can also receive an existing bitstream and generate
a report that verifies existing security features. Following
JFAC’s guidance, Bitwise incorporates recommended security
features available to the identified parts. Recommendations are
based on current best practices according to user-reported risk
tolerance guidance. There is an option to automatically update
the submitted bitstream with the security recommendations
through Bitwise’s wizard. Independently, encryption
capabilities may be implemented with Bitwise to allow
encryption, decryption or re-encryption of the bitstream without
requiring regeneration through the vendor provided integrated
development environment (IDE). Bitwise is also capable of
importing independent encryption material or allowing to
locally generate randomized cryptographic material necessary
for bitstream encryption. Cryptographic content generated
locally adheres to current best practices for key-generation and
incorporates the industry standard OpenSSL cryptography
library.

VII. USE CASES
 As FPGAs are becoming more sophisticated, so are the
tools that create bitstreams and firmware. Encryption,
authentication, obfuscation, and secure boot are developed using
design suite features specific to vendor applications. In a niche
field, each vendor has its own proprietary software providing
security to individual devices. Embedded Systems Engineers
may not focus on or may overlook cyber threats due to vigorous
project deadlines. Bitwise is intended to mitigate and provide a
level of assurance currently not available in vendor software or
easily executed by an FPGA design team in a cost effective
manner. Researchers targeting FPGA exploits publish papers
annually on real world threats that can be detrimental to the
security of FPGAs. As Common Vulnerabilities and Exposures
(CVEs) are published, it can be research intensive to find
whether those CVEs may affect a design, since a CVE can be
published after a design is implemented. Bitwise allows for the
rapid deployment of mitigation techniques that a security expert
can apply in response to the CVE. Bitwise provides this
capability without use of vendor software or source code.
Bitwise uses hardening techniques that enable obfuscation of a
bitstream configuration data. This allows for designers to have
full control over the bitstream in an easily applied manner. With
FPGA tools, it is important to understand vulnerabilities that
may reside in the FPGA design tool with application of remedial
actions. Depending on the application, many design cycles
occur over long periods of time and it can be challenging to
apply best practices. New exploits may have been discovered as
a result of research efforts, either private or public. Once the
final bitstream is developed, it is packaged in a vendor specific
file format. This file configures the part to be operational and
initializes a custom design on silicone fabric. The header
information acts as a first stage boot loader utilizing commands
that configure security settings.

VIII. FUTURE WORK

 Bitwise enhancements are being developed with intentions
to be the premier FPGA design security settings evaluation tool.
These enhancements will encompass the entire FPGA design by
adding the ability to access and assess System on Chip (SoC)

firmware. An FPGA bitstream’s header information used in the
device’s configuration engine defines the device’s security
posture. FPGAs with SoCs are similar and the First Stage Boot
Loader (FSBL), typically writen in C code, replaces the
bitstream header information. In a bootable image, an FSBL
configures the part using a partition header an array of structures
containing information related to each partition. These
additional features evaluating the FSBL would typically require
a high-level of technical expertise and extended labor when
performed manually.

 Since Bitwise automates the evaluation of the bitstream’s
security framework, SoC FPGAs will be assessed similarly
without using vendors’ design software. Bitwise will provide an
automated bootable image input file evaluation of the files in the
SoC boot image, and users will be able to modify and customize
the FSBL. An analyzer will be provided to analyze the bootable
image. Bitwise will have complete control of the FSBL and its
functionality. Known attacks can be prevented with an
evaluation of the FSBL and the Partition Header Table (PHT).
The PHT is utilized by the FSBL to acquire information about
each partition during the boot procedure. Bitwise will be able to
analyze the contents in the bootable image to include PHT and
FSBL settings. A report will be provided that identifies the
contents of the bootable image: security settings, data in image
contents, data in the FSBL and PHT contents, and through
following the API, providing a list containing the configuration
data to mitigate a known vulnerability.

 Bitwise will be able to encrypt, decrypt, sign, and verify the
bootable image and its contents without using vendor
software. For SoC devices, the BootROM and the FSBL
decrypt partitions during the booting cycle. The BootROM
reads the FSBL from flash, decrypts, loads, and hands off the
control. After the FSBL starts executing, it reads the remaining
partitions, decrypts, and loads them. AMD Xilinx Zynq SoCs
use the embedded Programmable Logic (PL) hash-based
message authentication code (HMAC) and an advanced
encryption standard (AES) module with a cipher block chaining
(CBC) mode. Additionally, if secure boot is not desired, then
software can at least be validated with a simple checksum.
Bitwise will be able to support key generation, encrypting
device partitions, operational key, rolling keys and checksum as
defined in User Guide (UG) UG1400 [11]. This functionality
will mitigate if an adversary were to swap the configuration file
on the target, addressing Threat Description-6 (TD-6).

 Bitwise will be able to audit the bitstream, fsbl.elf, user
code for bare-metal applications, and files containing user keys.
Original hardware definition files, the bitstream, and keying
files can be compared to the files Vivado creates before the file
is reported to Vitis. A comparison analysis will be provided by
comparing the bitstream with the original bitstream to verify it
has not been modified. Vitis or SDK create the FSBL and user
code to configure and run on the processor. Bitwise shall be able
to provide a comparison analysis in a report using the files in
Vitis before the bootable image is created. This functionality
facilitates detecting if an adversary were to substitute modified
FPGA software design suite by auditing or verifying plaintext
contents of programming images against insertions and/or
modifications during encryption or build by vendor tools,
addressing TD-7.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. January 2024.

 The FSBL can contain unnecessary code or debug-code that
causes the image to be larger in size. Through reduction,
Bitwise will be able to remove unnecessary code and modify
code in the FSBL. Like bitstream reduction, the FSBL can also
be reduced. The ability to modify the FSBL is a hardening
technique that will allow the user to insert or remove code from
the FSBL without using vendor software. This functionality will
be able to mitigate against current CVEs with the flexibility to
be used against future CVEs, as well as protected CVEs that
only specific contractors know about through vendor NDAs.
This functionality will facilitate mitigation of a known
vulnerability, addressing TD-1.

 Some designs using a Kernel instead of a bare-metal
application use a Second Stage Boot loader (SSBL). The SSBL
will be evaluated simular to the FSBL. If the design utilizes a
Kernel, without using any kernel development tools analysis of
the Kernel shall be provided. The abillity to unpack the kernel
and evaluate its contents will ensure the desired functionality is
implemented. The user shall be able to modify the kernel, even
write code that will be functional on the device.

REFERENCES
[1] Markets and Markets. “FPGA Market Market Forecast to 2029.”

[Online]. Available:
https://www.marketsandmarkets.com/PressReleases/fpga.asp (access
Jan. 16, 2024).

[2] M. Ender, A. Moradi, and C. Paar, “The Unpatchable Silicon: A Full
Break of the Bitstream Encryption of Xilinx 7-Series,” 29th USENIX
Security Symposium, August 2020.

[3] 73541 - Design Advisory for 7 Series/Virtex-6 FPGAs: Defeating
Bitstream Encryption. [Online]. Available:
https://support.xilinx.com/s/article/73541?language=en_US (access Jan.
25, 2024).

[4] H. Palmer, “FPGA Security Vulnerabilities and Countermeasures,”
Electrical Design, March 2023.

[5] S. Klix, N. Albartus, J. Speith, P. Staat, A. Verstege, A. Wilde, D.
Lammers, J. Langheinrich, C. Kison, S. Sester, D. Holcomb, and C. Paar,
Stealing Maggie's Secrets -- On the Challenges of IP Theft Through
FPGA Reverse Engineering,” December 2023.

[6] DoD Microelectronics: FPGA Level of Assurance 1 Best Practices,
U/OO/230110-22, PP-22-1270, Ver. 1.0, December 2022.

[7] R. Shanahan, “Field Programmable Gate Array (FPGA) Assurance,” 20th
Annual NDIA Systems Engineering Conference, October 2017.

[8] Open Firmware Reverse Analysis Konsole (OFRAK) on GitHub.
[Online]. Available: https://github.com/redballoonsecurity/ofrak (access
Jan. 22, 2024).

[9] M. Ender, G. Leander, A. Moradi and C. Paar, “A Cautionary Note on
Protecting Xilinx’ UltraScale(+) Bitstream Encryption and
Authentication Engine,” IEEE 30th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), New York
City, NY, USA, 2022 pp. 1-9.

[10] M. C. Sozio, G. Skipper, D. Hansen, A. Lukefahr and A. Duncan,
"MicroBitstreams: Reducing Configuration Time of Encrypted
Bitstreams," 2023 IEEE Physical Assurance and Inspection of
Electronics (PAINE), Huntsville, AL, USA, 2023, pp. 1-7.

[11] Vitis Unified Software Platform Documentation: Embedded Software
Development (UG1400). [Online]. Available:
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded (access Jan. 25,
2024).

APPENDIX

The following table highlights Bitwise’s full feature set.

TABLE II.

BITWISE FEATURES

 TRANSFORMATION
• Decrypts and re-encrypts a bitstream with a new key
• Converts a plaintext bitstream into an AES-GCM encrypted bitstream
• Converts an AES-GCM encrypted bitstream into a plaintext bitstream
• Verifies, re-signs, and re-encrypts RSA authenticated bitstream
• Performs microbitstream compression with the option of encryption

 HARDENING
• Remove commands for hardening purposes (e.g., WBSTAR)
• Salt-injected NOPs to make encryption harder to solve
• Shuffle commands to prevent breaking of encryption
• Inject NOPs to prevent breaking of encryption

 SECURITY VALIDATION
• Detects method of authentication of a bitstream
• Detects encryption used on a bitstream
• Detects whether a Warm Boot Start register is used within a bitstream
• Detects whether BRAM or eFUSE key storage is used
• Detects encryption scheme of encrypted bitstream

LEVELS OF ASSURANCE (LOA) ASSESSMENT
• Provides LoA compliance assessment for specific threat descriptions
• Provide security score with regard to LoA compliance
• States criteria to become compliant
• Recommends steps (when applicable) to achieve compliance
• Provides information extracted from metadata when available

https://support.xilinx.com/s/article/73541?language=en_US
https://github.com/redballoonsecurity/ofrak
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded

